Model of thermal wave-front distortion in interferometric gravitational- wave detectors. I. Thermal focusing
نویسندگان
چکیده
We develop a steady-state analytical and numerical model of the optical response of power-recycled Fabry– Perot Michelson laser gravitational-wave detectors to nonlinear thermal focusing in optical substrates. We assume that the thermal distortions are small enough that we can represent all intracavity fields as linear combinations of basis functions derived from the eigenmodes of a Fabry–Perot arm cavity. We have included the effects of power absorption in optical substrates and coatings, mismatches between laser wave-front and mirror surface curvatures, and aperture diffraction. We demonstrate a detailed numerical example of this model using the MATLAB program Melody for the initial Laser Interferometer Gravitational Wave Observatory detector. © 2003 Optical Society of America OCIS codes: 000.2780, 000.4430, 140.4780, 190.4870, 350.1270, 350.6830.
منابع مشابه
Optimization of thermal noise in multi-loop pendulum suspensions for use in interferometric gravitational-wave detectors
We study the thermal-noise spectrum of multi-loop pendulum suspensions for test masses in interferometric gravitational-wave detectors. The dependence of the thermal noise on suspension parameters and on properties of the wire material is discussed for the situation in which the losses are dominated by the internal friction in the pendulum wires. PACS: 04.80.Nn; 05.40.Ca; 62.40.+i
متن کاملInvited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions.
In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel ...
متن کاملAdaptive thermal compensation of test masses in advanced LIGO
As the first generation of laser interferometric gravitational wave detectors near operation, research and development has begun on increasing the instrument’s sensitivity while utilizing the existing infrastructure. In the Laser Interferometer Gravitational Wave Observatory (LIGO), significant improvements are being planned for installation in ∼2007, increasing strain sensitivity through impro...
متن کاملPerspectives on beam-shaping optimization for thermal-noise reduction in advanced gravitational-wave interferometric detectors: Bounds, profiles, and critical parameters
Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed as an effective device to reduce internal (mirror) thermal noise in advanced gravitational-wave interferometric detectors. Based on some recently published analytic approximations (valid in the infinite-testmass limit) for the Brownian and thermoelastic mirror noises in the presence of arbit...
متن کامل